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Abstract
The frequency at which new research documents are being published causes challenges for researchers who increasingly
need access to relevant documents in order to conduct their research. Searching across a variety of databases and browsing
millions of documents to find semantically relevant material is a time-consuming task. Recently, there has been a focus on
recommendation algorithms that suggest relevant documents based on the current interests of the researchers. In this paper,
we describe the implementation of seven commonly used algorithms and three aggregation algorithms. We evaluate the
recommendation algorithms in a large-scale biomedical knowledge base with the goal of identifying relative weaknesses and
strengths of each algorithm.We analyze the recommendations fromeach algorithmbased on assessments of output as evaluated
by 14 biomedical researchers. The results of our research provide unique insights into the performance of recommendation
algorithms against the needs of modern-day biomedical researchers.
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1 Introduction

A frequent challenge for science researchers is to keep up
to date with relevant research. This task is especially chal-
lenging because of the many disparate sources of literature,
a growing number of publications being produced, and the
relative lack of powerful tools to support context-specific
methods for exploration [32]. Specifically, in biomedical
research areas, which account for 30% of journals, the num-
ber of publications has doubled in the past 20 years [81].

One way to improve the research discovery process is
by providing researchers with recommendations for rele-
vant documents or related bodies of work. In this paper,
we analyze and compare seven recommendation algorithms
and three aggregation algorithms that were implemented
in a large-scale biomedical-focused discovery and distribu-
tion platform called Meta [75]. Meta’s underlying semantic
network contains over 90 biomedical controlled vocabular-
ies and ontologies, five core entities (papers, researchers,
institutions, journals, and concepts), and relations among
the entities (e.g., researchers write documents, documents
mention concepts, and journals publish documents). At the
time of this research, Meta indexed over 27 million doc-
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uments with 1.7 million full-text documents. Designing a
recommendation system for such a large-scale platform is
challenging and the choice of which algorithm(s) to deploy
must take into account: runtime performance (how fast the
algorithms execute on a large-scale knowledge base); cover-
age (the percentage of documents in the knowledge base for
which recommendations can be generated); and quality of
recommendations (the usefulness and relevance of the rec-
ommended documents to researchers).

We investigate the quality of recommended documents
and the performance of recommendation algorithms through
a set of experiments. Specifically, we use a qualitative experi-
ment to assess and compare the recommendations returnedby
tendifferent algorithms (sevenbase algorithms and three rank
aggregation algorithms) using metrics of coverage, diver-
sity, serendipity, novelty, usefulness, and accuracy [14,52,
57,61]. The results of our qualitative experiments provide
unique insights into the strengths and weaknesses of dif-
ferent kinds of recommendation algorithms in biomedical
research. Our experiments compare recommendations based
on meta-data, full-text, semantic relationships, citation net-
works, co-authorship, and combinations of these features.
To the best of our knowledge, our experiments are the first
to compare such a diverse set of recommendation algorithms
in a working system that is in production.

The remainder of this paper is organized as follows. In
Sect. 2, we survey relevant work on scientific databases and
recommender systems. The implementation of the approach
is explained in Sect. 3. The recommendation algorithms are
described in Sect. 4. The evaluation method and findings are
presented in Sect. 5. Finally, we conclude and provide future
directions in Sect. 6.

2 Related work

In this section, we introduce existing knowledge bases first.
Then, we present related research in this area.

2.1 Knowledge bases

Scientific databases have emerged as one of the mile-
stones in the modern scientific enterprise. One of the main
goals of these resources is to refine the methods of infor-
mation retrieval and augment citation analysis [9,28,33].
Major online scientific databases that are currently in use
by biomedical researchers are PubMed [22], Google Scholar
(GS) [37], Web of Science (WoS) [24], Scopus [31], Seman-
tic Scholar (S2) [91], and Meta [72]. Most of these online
scientific databases make use of recommendation systems
and algorithms to some degree and identify relevant docu-
ments based on certain criteria or data.

PubMed [82] is a free online resource that contains ref-
erences from the MEDLINE database [38] as well as other
life science journals and books [22]. It mostly focuses on
medicine and biomedical literature (as Meta), whereas the
other resources described below include journals from vari-
ous scientific fields [33]. Related documents are identified by
the number of terms in common. Approximately 2 million
terms are used andweighted based on the number of different
documents in the database that contain the term, the number
of times the term occurs in the first and second documents
and the location of the term.

GS [37] is another free service that crawls the web and
finds scholarly documents and documents. Documents are
indexed by their meta-tags or through automatic format
inspection. Compared to PubMed, GS provides very lim-
ited search fields (title, author, publication year, all text, and
publisher); however, GS supports full-text search, which dis-
tinguishes it from PubMed and WoS. For authors with a
GS profile, GS uses full-text analysis and algorithms to rec-
ommend documents related to one’s own publications, and,
recently, authors can follow research related to that of another
author [1].

WoS [23] is developed and maintained by Clarivate Ana-
lytics (formerly the Institute of Scientific Information of
Thomson Reuters), and, in comparison to other resources,
covers the oldest publications with archived records dating
back to 1900 [23,33]. TheWoS indexing procedure ismanual
and editors update the journal coverage by identifying and
evaluating promising new journals or deleting journals that
have become less useful [99]. WoS finds relevant documents
using keywords [45] in the search query and citation-based
methods. Recently,WoS andGS started a collaborative effort
to interlink their data sources, allowing researchers to search
in GS and move to WoS for deeper citation analyses, such as
in-depth citation history research [24,58,97].

Scopus [31] was launched at nearly the same time as GS,
and it is developed and maintained by Elsevier. Scopus is the
largest abstract and citation database of peer-reviewed liter-
ature. Similar to WoS, the indexing procedure is manual and
the journals are evaluated based on a number of criteria [31].
In comparison to other generic resources, such as WoS and
GS, Scopus offers a wider range of search fields called prox-
imities. Related documents are suggested based on shared
references, authors, or keywords.

S2 [91] was launched in late 2015 and is developed
and maintained at the Allen Institute for Artificial Intelli-
gence [4]. It is a free AI-based scholarly search engine. S2
uses natural language processing, data mining, and machine
learning techniques to discern the content of research docu-
ments. S2 covers over 40 million research documents [51].

Metamakes newlypublishedfindings available to researchers
by allowing users to subscribe to any context or entity in the
semantic network [75]. Meta’s goal is to make it quicker and
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easier for researchers to filter through scientific documents,
find the most important work, and most relevant research
tools and products. Because of the variety of available data,
that is in Meta’s knowledge base, several recommendation
algorithms have been implemented and deployed inMeta that
recommend documents based on criteria such as citation net-
works, text content, semantic tag content, and co-authorship
information.

In addition to the large-scale databases described above,
there are several other systems that focus on some aspects
of search and discovery of scientific documents such as rec-
ommendation, citation management, and citation analysis.
When compared to the major databases described above,
these tools have less extensive coverage of the scientific liter-
ature but do offer some models of recommendation systems.

CiteSeer [16], which covers computer and information
systems literature, was the first to provide automated citation
indexing and citation linking [62]. It also uses meta-data in
combination with word-based measures for the document
recommendation.

Mendeley [46] is a reference manager that can also
recommend documents based on user profiles or based
on a given document using a content-based approach,
more specifically, Term Frequency-Inverse Document Fre-
quency (TF-IDF) similarity [80] implemented on top of the
Lucene open-source libraries [79]. Mendeley uses meta-
data such as user-defined tags, abstracts, mesh-terms, and
title, as its fields [48]. For personalized recommendations, it
uses item-based collaborative filtering (IBCF) with Apache
Mahout [47,48]. Collaborative filtering is based on the notion
that people who agree in their subjective evaluation of past
documents (i.e., like-minded users) are likely to agree again
in their future evaluation of knowledge bases [85]. Once two
like-minded users are determined, items one user likes are
recommended to the other user, and vice versa.

Docear [12] is an experimental tool specifically designed
for managing and annotating PDFs and recommending doc-
uments publicly available on the web. Two types of recom-
mendation algorithms are implemented, namely stereotype
recommendations and content-based filtering, both of which
are highly dependent on what users have added to their pro-
files.

TheAdvisor [60] uses a variant of the PageRank algo-
rithm [43] on the citation graph. One interesting feature of
the TheAdvisor is that users are able to personalize the rec-
ommendations by changing variables of the algorithm to
find relevant documents whose relations to the query are not
obvious, older documents, or more recent documents. The
effectiveness of some of these techniques is limited in that
recommendations are either based solely on the similarity
between user preferences or on network statistics derived
from a user’s citation list [44].

We implemented seven base algorithms and three aggre-
gation algorithms that aggregate results from the seven base
algorithms in Meta. The algorithms are all inspired by exist-
ing work [5,6,29,35,54,55,69,94] and are customized for the
Meta dataset of biomedical documents. Retrieval of biomed-
ical literature always had its unique methods due to the rich
knowledge bases, such as theUnifiedMedical Language Sys-
tem (UMLS), Medical Subject Headings (MeSH), and the
Systematized Nomenclature of Medicine (SNOMED) that
enable the indexing of documents into concepts, for various
purposes, such as retrieval [76]. The algorithms, summarized
in Table 1, are described in detail in Sect. 4.

2.2 Related literature

Methods and solutions for evaluating recommender sys-
tems have been extensively discussed in the earlier literature
[2,41,49,92]. Recommender systems can be evaluated using
various techniques such as online or offline methods.We dis-
cuss related work along with two topics of (i) evaluation of
recommender systems and (ii) evaluation metrics.

2.2.1 Evaluation of recommender systems

Online evaluation and user study In user studies, evalua-
tors are asked to interact with a recommender system and
perform some evaluation tasks. Similarly, online evaluations
also benefit from actual users but in a natural course [2]. User
participation is essential in both types of evaluation. Box et
al. [17] provides a general study of online evaluation design.
Krishnan et al. [59] presents a comparison of online recom-
mender systems concerning human decisions. User studies
are popular for evaluation of recommender systems [2]. For
example, Lee et al. [64], Ma et al. [67], and Middleto et
al. [73] proposed recommender systems for specific appli-
cations, such as personalized user searches, and evaluated
their solutions using user studies. Raamkumar et al. [83]
proposed a solution (integrated discovery of similar docu-
ments) in order to helps users find similar documents. They
evaluated their solution using ACM Digital Library by ask-
ing 121 researchers to answer different evaluation questions.
Mogenet et al. [74] reported that although online evaluation
is the most reliable way to evaluate the results of their exper-
iments, it is not as fast as offline evaluation. They compared
metrics such as precision and recallwhen recommending jobs
and found that only a few metrics from the online evaluation
are highly correlated with their offline evaluation counter-
parts.
Offline evaluationOffline evaluation benefits from historical
data to evaluate a recommender system. Offline evaluation
is among popular techniques because frameworks and eval-
uation measures can be developed for evaluations. However,
offline evaluation is limited in understanding the impact of
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metrics such as serendipity and diversity on user experience
[52,86]. Offline evaluation lacks the ability to measure the
actual propensity of users interacting with the recommender
system in the future. As an example, data may change over
time and the current predictions might not reflect correct
recommendations in the future [2]. Moreover, evaluation
measures such as accuracy do not capture metrics such as
serendipity and novelty [2]. Cañamares et al. [21] examines
the steps that need to be taken in the offline evaluation of
recommender systems, such as user studies and evaluation
metrics.Gruson et al. [39] comparedoffline evaluation results
with online evaluation as the gold standard. They reported
problems from both bias and variance in offline estimators
can be mitigated by identifying proper experiments to A/B
test. Beel et al. [10] compared offline evaluation results to
online evaluation in the context of research-paper recom-
mender systems. They reported that offline evaluations do not
always reflect the same result as online evaluations.However,
they reported a strong correlation between online evaluation
results and user studies.

In this paper, we evaluate recommendation algorithms in
the context of biomedical knowledge bases with the help of
14 expert evaluators. We show that algorithms such as B-
CCP (see Sect. 4) perform better than other algorithms in
biomedical knowledge bases.

2.2.2 Evaluation metrics

McNee et al. [71] argue that measuring accuracy is not
enough for evaluation of recommender systems. Konstan et
al. [56] discuss the importance of novelty in recommender
systems. Ge et al. [34] study the coverage metrics and Smyth
and McClave [95] discuss diversity metrics. Kaminskas and
Bridge [52] focus on beyond-accuracy metrics for evaluating
recommender systems, including serendipity, novelty, and
coverage. They observe correlations between metrics such
as diversity and novelty when conducting an offline evalua-
tion. Schein et al. [89] discuss the metrics that should be used
for evaluating cold-start recommender systems, i.e., for the
items that no one has yet evaluated nor ranked them.

In this work, we incorporate all the important metrics
for the evaluation of recommender systems. We evaluate six
metrics of accuracy, coverage, diversity, novelty, serendipity,
usefulness in the context of biomedical knowledge bases.

3 The recommender system in a nutshell

Figure 1 gives an overview of the recommender system
that we evaluated. The algorithms that are discussed in this
paper were integrated into Meta’s document-to-document
recommendation system [75] and make use of its large-
scale semantic knowledge base. As shown in Fig. 1, the

document-to-document recommendation system has three
main components:

(i) Data Source Public and private data sources that feed
the knowledge network, including PubMed [82], Cross-
ref [26], and full-text documents.

(ii) Data Processing An Extract, Transform, Load (ETL)
pipeline that disambiguates the entities and discovers
relations among them.

(iii) Recommendation Engine The recommendation engine
includes the seven base recommendation algorithms are
described in Sect. 4, and the aggregation algorithms that
combine recommendations from the base recommenders
to generate the final set of recommendations.

3.1 Data source

Three main data sources are used to populate the knowledge
base: PubMed [22], Crossref [26], and full-text documents.

PubMed. PubMed is the central repository for all biomed-
ical publications. PubMed provides a detailed API
through which biomedical journals and conferences can
be retrieved [22]. A PubMed record contains a title,
abstract, and meta-data (e.g., authors, affiliations, key-
words, DOI, and ISSN). Each PubMed document has
a unique id (PMID) corresponding to a unique digital
object identifier (DOI) registered by Crossref [26].

Crossref. Crossref is a non-profit association of scholarly
publishers that develop the infrastructure to distribute and
maintain DOIs [26]. From Crossref, we gathered meta-
data for 50.9 million documents and citations.

Full-Text Documents. Our third data source is full-text doc-
uments frompublisher partners ofMetawhich, at the time
of our experiment, included Elsevier, Sage, DeGruyter,
PLoS, BMC, among others. The Meta full-text pipeline
contains various adapters for diverse publishers and
extracts both meta-data and citation information from
full-text content, which arrives in both XML [18] and
PDF formats.

3.2 Data processing

Each document goes through a disambiguation engine which
has two main tasks. The first is disambiguating the authors
of the document where the goal is to associate the document
with the existing authors in the database or assign a newly
discovered author. Meta’s author disambiguation algorithm
is modeled after the winning algorithms of the KDD Cup
2013, Author Disambiguation challenge (track-2) [65,66].
Given a manually disambiguated document-author assign-
ment training set, a random forest classifier [42] is trained to
discriminate between correct and incorrect author-document
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Data Processing Recommendation EngineData Source

-T

Fig. 1 System schema: data flow of the recommendation engine

assignments. Given an existing document-to-author assign-
ment database and a newly published document, the algo-
rithmcompares the document against each candidate author’s
profile which included over 43 predictive features at the
time of our experiment, using the classification model. If
the author with maximum match probability achieves a
threshold, the document is assigned to this candidate author;
otherwise, a newauthor profile is generated and the document
is assigned as the first document of the newly discovered
author. The 43 predictive features span five major cat-
egories: author name similarity metrics (e.g. Levenstein,
Jaro-Winkler, and Jaccard [36]), document content simi-
larity (mostly based on TF-IDF [84]), affiliation similarity,
co-authorship information, and author’s active time compat-
ibility. Meta’s author disambiguation algorithm achieves an
F1 score of 0.73, AU-ROC of 0.94, and AU-PRC of 0.60.

The second disambiguation process deals with concept
mentions. Once a concept mention is recognized through an
entity recognizer, such as GNAT [40], DNORM [63], and
NeJI [20], it is normalized into the canonical name from
UMLS [15] and becomes a semantic tag. Among the many
concept types, we used only the Medical Subject Headings
(MeSH) in our algorithms.

Next, documents go through a citation extraction phase,
during which references listed by the documents are iden-
tified and resolved into unambiguous, directed DOI-DOI
pairs and added into the citation network of Meta which has
roughly 580 million citations. For documents with full-text,
if possible, we also extract pairwise proximities of the refer-
ences. Finally, the text and semantic tag components of the
documents are indexed into an inverted index, which is built
using Hadoop MapReduce [93] based TF-IDF builder [68].

3.3 Recommendation engine

The recommendation algorithms operate on the transformed
data in Meta’s semantic knowledge network. The algorithms
are implemented using a diverse technology stack: Hadoop,
Java, Python, and MySQL. Some of the algorithms depend
heavily on the Hadoop based MapReduce framework, while
others are implemented with direct SQL queries. The rec-
ommended documents produced by the base algorithms are
aggregated using a number of rank aggregation algorithms.A
list of the base and aggregation recommendation algorithms
is provided in Table 1. In the next section, the recommenda-
tion algorithms are explained in detail.
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Table 1 Summary of recommendation and rank aggregation algorithms
that are utilized in our system

Name Short Description

B-CCS: Co-Citation
Similarity

Recommends documents
cited by similar citing
documents [69,94]

B-BC: Bibliographic
Coupling

Recommends documents
with similar
references [54]

B-IBCF: Item-Based
Collaborative Filtering

Treats citations as user-item
purchases, recommends
items to users that are
similar to ones user
already bought

B-CCP: Co-Citation
Proximity

Recommends documents
that are co-cited and close
together in the text [35]

B-AS: Abstract Similarity Recommends documents
with similar text content

B-STS: Semantic Similarity Recommends documents
with similar semantic
content

B-CA: Co-Authorship Recommends documents
with similar/shared
authors [78,96]

A-BS: Beam Search
Aggregation

Aggregates based on
heuristics using beam
search [6]

A-BL: Borda Aggregation Aggregates by simply
averaging over the
ranks [27]

A-MS: Merge Sort
Aggregation

Aggregates based on merge
sort based heuristic [6]

4 Recommendation algorithms

The document-to-document recommendation problem can
be stated as: given a database of documents, P where |P| =
n and a document, pi that is of interest to a researcher R,
recommend a list of k documents, RP = (p1, p2, . . . , pk)
to R such that p j , j = 1, . . . , k are judged to be related to pi
and/or in some way useful to R. The list may be a partially
ordered list such that p1 is considered to be more relevant
than p j , j = 2, . . . , k.

In this work, we focus on implementing and evaluat-
ing well-studied recommendation algorithms and analyzing
their performance in a large scale biomedical knowledge
base. We implemented seven based recommendation algo-
rithms (as listed in Table 1) on a database with more than
24 million biomedical documents. All the research docu-
ments do not share the same structure or, if they do, their
full text may not be publicly accessible. Therefore, we con-
sidered the algorithms that would work for such cases, i.e.,
the ability to leverage various available data types. We also

Fig. 2 Citation structures of sample documents. Citation-based algo-
rithms produce the following recommendations for Document E in
order: B-CCS → (A, C); (B, D). B-BC → Z; Y. B-IBCF → (A, B, C);
D. B-CCP → A; D; B; C; (F, G)

implemented three different algorithms, customized for our
dataset of biomedical documents, that aggregate results from
the seven base algorithms [5,6,29,35,54,69,94]. Table 1 sum-
marizes the recommendation algorithms.

4.1 Base recommendation algorithms

The base recommendation algorithms make use of citation
information, content information in abstracts, the full-text of
the documents, and authorship information.

4.1.1 Citation-based algorithms

We generated a citation network of the documents in our
database by gathering citations from 50.9 million docu-
ments from across the sciences, meta-data from 24.6 million
PubMed documents and the full-text of over 16 million doc-
uments using a fully automated technique. Our resulting
citation network has over 17 million nodes (which is a subset
of the biomedical documents in the 50.9 million documents)
and over 350 million edges. The base algorithms that use
the citation network are: Co-Citation Similarity (B-CCS),
Bibliographic Coupling (B-BC), Item-Based Collaborative
Filtering (B-IBCF), and Co-Citation Proximity (B-CCP).
Figure 2 illustrates a sample data set of three documents with
citations indicated.
Co-citation similarity (B-CCS) Intuitively, documents that
are cited by the same document or co-cited [69,94] many
times are likely to be similar to each other. This notion of
similarity provides us with a basis for the recommendation.
Referring to the example in Fig. 2, given Paper E , B-CCS
recommends Documents A and C ahead of Paper B or Paper
D becausePaper E is co-citedwithPaper A in twodocuments
(Documents Y Z ) and Paper E is co-cited with Paper C in
two documents as well (also Documents Y and Z ). However,
Paper E is only co-citedwith Paper B in one document (Paper
Z ) and is only co-cited with Paper D in one document (Paper
Y ).

The notion of co-cited documents can be captured by
using incoming citation vectors. Given a citation network
that contains n documents, we define the incoming citation
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vector vectoriin of a paper pi as an n-dimensional bit vector
vectoriin = (bi1, b

i
2, . . . , b

i
n) where bij = 1 if p j cites pi ,

otherwise bij = 0. Then, pi and pk are co-cited by paper

p j if bkj = bij = 1. Two documents with many 1’s in the
same position in their incoming citation vectors are co-cited
by many documents.

To recommend documents related to paper pi , we can
apply standard vector similarity metrics such as cosine sim-
ilarity [98] on vectoriin and vector jin for all documents p j

to find documents that are most co-cited with pi . Cosine
similarity also normalizes similarity scores by the norms
of the vectors, intuitively weighting documents with many
incoming citations less than documents with few incoming
citations. However, cosine similarity gives an equal weight
to all coordinates of vectoriin and vector jin. Suppose there is
a hypothetical paper pk that cites a lot of documents, then
for many documents px , in the vectors vectorxin, b

x
k = 1.

Conversely, if a paper pc cites few documents, then in the
vectors vectorcin, b

x
c = 1 for only a few documents px . Intu-

itively, coordinate c should contribute more than k because
it is rarer; two documents co-cited by a document with few
outgoing citations is worth more than being co-cited by a
document with many outgoing citations. To account for this,
we normalize the incoming citation vectors by dividing each
coordinate of vectoriin and vector jin by the number of outgo-
ing citations of the document represented by the coordinate
before applying cosine similarity.

The number of pairwise similarity computations grows
quadratically with the number of documents in the database
and is around 1014 for 25 million documents. To speed up
this computation, we only consider pairs of documents with
at least one common incoming citation, and this resulted in a
105-fold decrease in the number of pairwise similarity com-
putations.
Bibliographic coupling (B-BC) Documents having similar
citation profiles are intuitively more similar than documents
with different citation profiles [54]; this gives us yet another
basis for recommendation. In this case, we compute the n-
dimensional outgoing citation vector for each paper pi as
vouti = (bi1, b

i
2, . . . , b

i
n) where bij = 1 if pi cites p j and

bij = 0 otherwise. Then, pi and pk both cite paper p j if

bkj = bij = 1. Two documents with many 1’s in the same
position in their outgoing citation vectors cite many of the
same documents.

We then employ the same algorithm used for co-citation
similarity (B-CCS) except with the citation edges reversed.
We normalize outgoing citation vectors by penalizing coordi-
nates that represent documents withmany incoming citations
(those that are cited bymany documents); then, given a docu-
ment, we compute the cosine similarity between it and every
other document to obtain documents with highly similar cita-
tion profiles as recommendations. The penalization step is the

same as in B-CCS. The intuition behind it is: two documents
citing a document with few incoming citations is worth more
than citing a document with many incoming citations.

In the example in Fig. 2, for Paper E , B-BC recommends
Paper Z before Paper Y because Paper Z has more citations
in commonwith Paper E (both co-cite Documents F andG).
Paper Y only has one citation in common with Paper E .

Similar to our approach used for pairwise similarity com-
putations in co-citation similarity (B-CCS) algorithm, we
only consider pairs of documents with at least one common
outgoing citation resulting in a 105-fold decrease in the num-
ber of computations.
Item-based collaborative filtering (B-IBCF) The item-based
collaborative filtering algorithm is implemented by Apache
Hadoop [7]. Using the citation network,we treat each citation
edge as a user-item interaction. Paper pi citing paper p j rep-
resents user pi buying item p j . We treat all our documents as
both items and users and recommend documents (items) to
documents (users) based on citations. We perform the stan-
dard item-based collaborative filtering approach [87]: given
a user (document) pi , we want to recommend items (docu-
ments) to pi that pi does not already have (does not already
cite) and are similar to items that pi already has (already
cites). Just like the co-citation similarity algorithms, the simi-
larity is based onvector similarity.Given an item (p j ), its user
vector is the binary vector of users (documents) that have pur-
chased (cited) this item (p j ). So, for example, if the incoming

citation vector for paper p j is vector j
in = (b j

1 , b
j
2 , . . . , b

j
n)

where b j
i = 1 if pi cites p j and b j

i = 0 otherwise, then we
consider p j as an item that is bought by those users pi where

b j
i = 1. Since these vectors are binary, we use Hadoop’s log-
likelihood vector similarity measure [50] to compute item
similarity between items that user pi has bought, and items
that pi does not have and pick the best items by averag-
ing similarity scores across all items that pi has. Intuitively,
given a paper pi , we recommend documents most similar to
its citations (using log-likelihood similarity, which is intu-
itively co-citation similarity).

As shown in the example in Fig. 2, for Paper E , B-
IBCF recommends Documents A, B, and C because Paper
Z (which has more citations in common with Paper E than
Paper Y ) cites all of these documents and E does not (i.e.,
does not have them in its list). Next, B-IBCF recommends
documents Paper D because Z does not cite it (have it in its
list) but Y does. Documents F and G are not recommended
because Paper E also cites (has) them.

The primary difference between B-IBCF and B-CCS is
that given an input paper p, B-CCS finds documents closest
to p using co-citation similarity. B-IBCF, however, does not
look at the input document, it instead treats the input docu-
ment as a set of documents by looking at its citations, and
then recommends documents closest to its citations by aver-
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aging co-citation similarity between its citations and those
of other documents.
Co-citation proximity (B-CCP) The co-citation proximity
approach is based on citation proximity analysis [35]. The
intuition behind the algorithm is that if citations occur close
together in the text of a document, then the cited documents
are likely to be more closely related than if the citations were
further apart. We use a different weighting scheme for the
proximity occurrences thanGipp andBeel [35] andwe aggre-
gate the occurrence values.

We processed each paper p to extract all possible citation
pairs between the documents referenced in the citation list of
p. Each citationpair is given aproximity type (group—within
the same square brackets, sentence, paragraph, section, or
paper) based on the minimal distance between each citation.
The proximity type is calculated by parsing the structure of
the document’s XML format [18] or applying minor heuris-
tics.

Relationship weights are used to quantify the different
minimumproximities between citation pairs and are summed
across document pairs to indicate their similarity. For exam-
ple, co-citations in the same document are assigned a weight
of 1, co-citations in the same section, a weight of 2. If paper
pi and paper p j are cited once within the same sentence
(a total relation weight of 4) but paper pi and paper pk are
cited within the same section in three additional documents
(a total relation weight of 2 × 3 = 6), then paper pi has
a stronger similarity to paper pk than to paper p j . We also
experimentedwith and applied the approach to larger datasets
(over 16 million documents) than what Gipp and Beel used
(1.2 million) [35].

Referring back to the example in Fig. 2, for Paper E ,
B-CCP recommends documents based on minimal citation
proximity to Paper E over the multiple documents in which
Paper E is cited (Documents Y and Z ). The recommended
documents are ordered as follows: Paper A which is cited in
the same sentence as a citation to Paper E (weight of 4) in
Paper Y and in the same section (weight of 2) in Paper Z
(total weight is 6); Paper D which is cited in the same group
as Paper E (weight of 5) in Paper Y ; Paper B which is cited
in the same sentence as Paper E (weight of 4) in Paper Z ;
Paper C which is cited in the same document (Paper Z ) as
Paper E (weight of 1) and in the same section as Paper E
(weight of 2) in Paper Y (total weight of 3); and Documents
F and G together with each having a weight of 2. (In both
Papers Y and Z , Paper F is cited in the same document as E
which is 1 + 1 = 2 and Paper G is cited in the same section
as Paper E in Paper Z for a weight of 2).

One issuewith this approach is the situation inwhichpaper
pi and paper p j are cited in the same sentence but used to
contrast each other [35]. This is not a significant issue in our
case because our large collection of documents means that
consistently co-cited documents will have a stronger con-

nection. Additionally, even if two documents are co-cited in
the context of a disagreement and/or conflict because they
propose opposing theories, the fact that they are frequently
co-cited may make them strongly related (i.e., such that one
would be a good recommendation for the other).

4.1.2 Content-based algorithms

We can also identify similar documents to recommend
based on the content of the document or its abstract. These
similarity-based algorithms make use of terms and semantic
meaning of the terms in the text.
Abstract similarity (B-AS) Almost every document includes
an abstract that typically summarizes the document’s focus,
methods, experiments, results, and contributions in a succinct
and efficient manner. Many knowledge base search engines
index only the abstract (rather than the full-text of the docu-
ment) because abstracts provide sufficient information about
the full document. Two documents with similar abstracts are
likely to be similar documents; therefore, we used the text of
abstracts as a basis for recommending documents. To deter-
mine abstract similarity, we use a TF-IDF similarity measure
on thewords of the abstract. TF-IDF is calculated as the prod-
uct of the term frequency (TF: the number of times a term t
occurs in a document) and the inverse document frequency
(IDF: a measure of how common or rare the term is across
all documents).

Using the B-AS algorithm to recommend documents for
Paper E in Fig. 3, Paper A is recommended before Paper B
because Paper A contains three instances of an infrequent
word (highlighted in light purple). Paper B is recommended
before Paper C because Paper B contains one instance of
the infrequent word and two frequent words (highlighted in
green and pink). Documents C and D both contain frequent
words in common with Paper E , but Paper C contains more
instances of words in common with Paper E (three vs. two);
hence, it is recommended before Paper D.

To obtain accurate TF-IDF similarity, first, we normal-
ize the abstracts by tokenizing them into words, eliminating
external token punctuation, and stop-word tokens. TF-IDF
is then calculated on a token level. We calculate the inverse
document frequency of each token on our entire document
abstract dataset (size approximately 14million). Inverse doc-
ument frequency of a token t amongst all n documents
pi ∈ P in the dataset is defined as:

IDF(t, P)=
{√

log(n/DF(t, P)) if DF(t, P) �= 0
0 if DF(t, P) = 0

where DF(t, P) is the number of documents in the set P in
which t occurs.

Then, given two abstracts from documents pi and p j ,
we compute their TF-IDF vectors; that is, their abstracts

123



A qualitative study of large-scale recommendation algorithms for biomedical knowledge bases 205

Fig. 3 Example of commonwords and keywords (based offMeSH ontology) represented by rectangles in the documents. Content-based algorithms
produce the following recommendations for Paper E in order: B-AS → A, B, C, D (using words); B-STS → B, A, D, C (using keywords)

expanded into d-dimensional bit vectors, where d is the
number of distinct words that occur in all abstracts (in our
database this is approximately 9 million distinct words)
such that each position in the vector for paper pi con-
tains TF(t, pi )×IDF(t, P) for the corresponding token t .
The term frequency T F of a token t in pi is defined as:
TF(t, pi )=√

count(t, pi ), where count(t, pi ) is the number
of times t occurs in the abstract of paper pi .

Given the two TF-IDF vectors, TF-IDFi and TF-IDF j for
pi and p j , respectively, we compute their cosine similarity
to obtain the final similarity score. Intuitively, this similarity
score captures abstracts that share similar terms, strength-
ened by the number of times the term occurs in the abstracts
under consideration and penalized by the commonality of the
term amongst all abstracts. Thus, we expect rare terms that
occur frequently in both abstracts to indicate strong similarity
between the abstracts.

Suppose for a given paper pi in our dataset, we want to
obtain the top 50 documents similar to pi using abstract TF-
IDF similarity. This computation is extremely inefficient as it
requires≈ 25,000,0002=6.25×1014 similarity calculations.
Therefore, as a fast approximation for a given document
abstract, we consider only those document abstracts that
share at least one rare term with it. We define a term t as
rare when DF(t, P) ≤ 5000. This step significantly cuts
down the number of similarity calculations to approximately
2×1011 (more than 3000-fold decrease). For the top recom-
mended documents, the abstracts should intuitively share at
least one rare term, so this filtering step should not eliminate
too many documents and, in practice, this heuristic search
space reduction strategy works well.
Semantic similarity (B-STS) The B-AS algorithm is very
sensitive to ambiguity and synonymy problems. To over-
come this issue, we aimed to use semantic relationships to
infer indirect mentions. Traditional TF-IDF similarity-based

systems are not able to identify similarity among different
terms for the same concept but normalized field/concept
annotations provide a principled way to detect and measure
similarity. Hence, we applied named entity recognition algo-
rithms to all documents in our database to identify mentions
of concepts such as gene, chemicals, diseases, and research
areas, which are all included in the MeSH ontology [77].

There are about 28,000 terms and 139,000 supplemen-
tary concepts in MeSH. For every document, we capture a
summary of the document based on the fields it contains.
Intuitively, documents that share more fields are more simi-
lar than documents that share fewer fields. As in the abstract
similarity algorithm (B-AS), we use TF-IDF similarity to
compute semantic similarity in exactly the same way, except
instead of using normalized tokens representing words of
the abstract, we use fields associated with the document. TF-
IDF inherently treats documents that share many rare fields
as closest to each other. The term frequency of a term t and
paper pi is either 0 or 1 because our field/term tagger only
tags the existence of each field in a document. As in abstract
similarity, we only compare similarities between documents
which share at least one rare field (term, t), where rare is
defined as occurring in at most 5000 documents in the set
P of documents: DF(t, P) ≤ 5000. This heuristic filtering
approach reduces the number of pairs we have to compare to
72.2 billion (6.25 × 1014) without jeopardizing the quality
of the recommendations.

Going back to the example in Fig. 3, having reduced the
words to their semantic fields, the frequency of instances
within each document no longer has an impact. Paper B
is recommended first because it shares the most infrequent
terms with Paper E . Paper A and then Paper D are recom-
mended next because Paper A still contains a term more
infrequent than Paper D. Finally, Paper C is recommended
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because it contains one infrequent term in common with
Paper E .

4.1.3 Co-authorship similarity (B-CA)

Themain idea behind co-authorship based recommendations
is that documents which share authors are likely to be related
to each other [78,96]. We take a simple approach by first
building the co-authorship network where the set of nodes
P = {p1, p2, . . . , pn} represents the set of n documents and
aweighted edge between two documents, (pi , p j ) represents
the number of shared co-authors between documents pi and
p j . Then, for a given paper pi , we traverse the co-author
network graph to each of its one- and two-hop neighbors
p j to calculate the shared-author scores as the sum of the
weighted edges in the path from pi to p j . Each one- and two-
hop neighbors p j is ranked by its shared-author score with pi
and the documents with the highest scores are recommended
(ties are broken randomly).

As shown in the example in Fig. 4, in one and two hops
from Paper E , Paper B has six co-authors (three on the path
E–A–B, one on the path E–B, and two on the path E–C–
B), and, hence, is the first recommendation. Paper A is next
because it has four co-authors on the one- and two-hop paths
(one on E–A and three on E–B–A), while Paper C is last
because it only has three co-authors on the paths (one on
E–C, and two on E–B–C).

4.2 Aggregation algorithms

We implemented three rank aggregation methods [5,6,29] to
aggregate results from the base algorithms described above.
Given a set of n elements and K complete rankings or per-
mutations of these elements π1, π2, . . . , πK , the goal is to
find the Kemeny optimal ranking π [53], i.e., the ranking
that minimizes

∑K
i=1 d(π, πi ), where d(·, ·) is the number

of pairwise disagreements between a pair of rankings, also
known as the Kendall distance. When complete rankings are
not available, we place all the unranked objects at the bottom
of the list and consider all objects in this set to be tied with
each other. The problem of finding theKemeny optimal rank-
ing is NP-hard [8]. SeeAli andMeilă [6] for a comprehensive
survey of algorithms to compute Kemeny ranking. We use
three different algorithms to approximate the Kemeny rank-
ing. The precedence matrix Q ∈ Rn×n has entries Qi j that
represent the fraction of times an element i is ranked higher
than element j , i.e., Qi j=(1/K )

∑K
k=1 I (i ≺πk j), where

I (·) is the indicator function, and≺π is the precedence oper-
ator for ranking π .

4.2.1 Beam search (A-BS)

The set of all permutations can be represented in the form
of a tree, where each permutation can be traced in a path
from the root to a leaf. Note that every path from the root
to an internal node in the tree represents a partial ranking.
We use beam search to explore the set of all permutations
and output the optimal ranking. The basic idea is to consider
only B candidate solutions (partial rankings) at each level
of the tree, where B is a user-defined parameter known as
beam width, and these candidates represent the best partial
rankings found so far by the heuristic search algorithm. The
tree is then explored in a breadth-first fashion from the root
all the way down to the leaves. The optimal solution is then
selected from the best B candidates found at the lowest level
of the tree. A greedy version of the algorithm can be derived
by setting B = 1, where at each level only one candidate
solution is considered greedily. In the other extreme, when
B = ∞, the algorithm explores all the possible exponential
number of rankings/paths in the tree.

In order to select the best B candidate solutions at each
level of the tree, we need to define a cost function to score
partial rankings. This cost function can be defined using the
precedence matrix Q as: C(πp)= ∑

(i, j)∈πp
Qi j , where πp

is a partial ranking and {(i, j)} is the set of all pairs (i, j)
such that i ≺πp j in the partial ranking, including transi-
tive pairs. Our implementation of the algorithm takes about
3.58 s/document on a single machine with 8 threads.

4.2.2 Borda counts (A-BL)

A simple algorithm to aggregate rankings is to rank objects
based on their average ranking computed from all the multi-
ple rankings [27]. This is equivalent to sorting the elements
based on the column sum of the precedence matrix, i.e.,
argsorti

∑
Qi j . Our implementation of the algorithm takes

about 0.161s/document on a single machine with 8 threads.

4.2.3 Sort-based approximation (A-MS)

Comparison-based sorting algorithms, such as merge sort or
quick sort [25], can be adapted to aggregate rankings using
the precedence matrix Q [6]. Instead of comparing pairs of
elements i and j in the sorting algorithm, we compare Qi j

and Q ji . We refer the reader to [88] for more details on
comparison sort methods for rank aggregation. In our exper-
iments, we adapted merge sort to solve the rank aggregation
problem. Our implementation takes about 0.159s/paper on a
single machine with 8 threads.
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Fig. 4 Co-authorship structure
where common authors are
shown as icons along paths.
Recommendations for
Document E are as follows:
B-CA → B, A, C

4 co-authors on paths6 co-authors on paths3 co-authors on paths

Paper 
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B
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A

5 Evaluation

In this section, first, the evaluationmethod is explained; then,
in Sect. 5.2, the observations and findings are presented and
discussed.

5.1 Approach

We provided 14 expert evaluators, who are active researchers
in the biomedical field, with the output of each recom-
mendation algorithm. The evaluators selected documents
from their field of expertise and then rated the quality of
the recommendations returned for those documents by each
of the algorithms according to six evaluation metrics (see
Sect. 5.1.4). Figure 5 summarizes the setting for the evalua-
tion process.

5.1.1 Recruitment and participants

We advertised for graduate researchers and postdoctoral fel-
lows at a center for cellular and biomedical research at a
major research university. We also asked them to share the
recruitment invitation within their networks. Eventually, 14
people agreed to participate in our study. Participants were
compensated for their participation.

5.1.2 Presentation

To ensure high-quality annotations and to calibrate the partic-
ipant ratings, a random document was returned in each set of
recommendations. The participants were informed about the
existence of random documents. There were 1990 random
documents inserted into the lists and 1977 out of 1990 were
rated 1, resulting in greater than 99.3% correctness in accu-
racy ratings. Each participant selected 15 documents from
their field of study for a total of 14×15 = 210 documents.
There was one duplicate document; thus, a total of 209 doc-
uments were used to evaluate the algorithms. Table 2 shows
the number of documents in different categories of publi-
cations. As shown in Table 2, the majority of the selected

are research documents as the primary focus of this work is
research documents.We also compared the keywords associ-
ated with selected documents with the keywords associated
with the random documents to see how similar are the ran-
dom documents and selected documents. The results show
that 62%, 27%, 26%, 20%, and 5% of the selected docu-
ments are associated with humans, female, male, animals,
and mice keywords, respectively. Similarly, 44%, 10%, 9%,
47%, and 19% of the random documents are associated with
the aforementioned keywords, respectively.

5.1.3 Document selection

Participantswere instructed to select research documents that
they knew well and were told that they would need to be able
to judge the correctness, interestingness, and relatedness of
the recommended documents. In selecting the 15 documents,
participants were also asked to try to select documents as
diverse as possible: some old, but mostly relatively new doc-
uments (last 4 to 5years); some from high impact journals;
and some from medium or low impact journals. They were
told that there was no restriction on the subject as long as
the document was in the biomedical field and indexed in
PubMed.

5.1.4 Scoring criteria andmetrics

For each document, the top 9 recommended documents
returnedby each algorithm (plus one randomdocument)were
provided to participants. The participants were asked to rate
each individual recommended document on a scale of 1 to
3 according to accuracy, that indicates the relevance and
relatedness of the recommended documents to the selected
document, (1 is not at all accurate, 2 is somewhat accurate
and 3 is very accurate). The evaluation metrics [52] (besides
accuracy) are:

– Coverage Checks that highly relevant documents are not
missing.
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B-CCS

B-BC

B-IBCF

B-CCP

B-AS

B-STS

B-CA

Base Recommenders

A-BS

A-BL

A-MS

RecommendationsDataset

Participant

A-MS

A-BL

B-CA

B-STS

B-AS

B-IBCF

B-BC

B-CCP

B-CCS

Evaluation Criteria

Participant

A-BS
15 Papers

Serendipity

Coverage

Novelty

Diversity

Accuracy

Aggregated Recommendations

Usefulness

Fig. 5 High-level overview of evaluation experiments detailing how results from one algorithm were fed into another

Table 2 Distribution of
participants’ selected documents
in different publication
categories

Category Number of documents

Research support non-U.S. government 155

Research support, extramural 60

Research support, U.S. government, 33

Funding support by Public Health Service (p.h.s)

Research support, U.S. government, non-p.h.s. 28

review 8

Comparative study 8

Research support n.i.h. intramural 4

Comment 3

Validation study 1

Evaluation study 1

Research support American recovery and reinvestment act 1

– Diversity Measures diversity of the recommended doc-
uments according to factors such as time, author, topic,
and method.

– Novelty Indicates that the user did not know about the
recommended documents before.

– SerendipityMeans that the documents are both novel and
surprising.

– Usefulness Measures the value of the recommendations
to the user’s research.

5.1.5 Analysis

For each recommendation algorithm, first, we measure the
distribution of evaluation scores (i.e., very, somewhat, and

not at all) across each metric (see Fig. 6). Then, in order to
rank the performance of each recommendation algorithm,
we apply the Scott–Knott test [90] on the ratings with a
confidence level of 95% (α = 0.05). The Scott–Knott test
is a classification technique that ranks the performance of
the algorithms into statistically distinct groups of ranks. It
recursively divides the algorithms into two statistically sig-
nificantly different groups of ranks (if possible) and repeats
this process on the divided groups. The test continues until
no group of algorithms could be divided. The output of the
Scott–Knott test is an ordered set of recommendation algo-
rithms (see Fig. 7).
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5.2 Findings

We begin by presenting the results of the evaluators’ scores
for the documents recommended by each algorithm. Figure 6
shows the distribution of the scores for the recommended
documents. Of the 209 documents selected by the evalu-
ators, we were able to generate recommendations for 157
documents using B-AS and B-CA algorithms, 148 docu-
ments usingB-CCS, 131documents usingB-IBCF, 129using
B-STS, 128 using B-BC, and 114 using B-CCP. Figure 7
illustrates the output of the Scott–Knott test across each met-
ric. Each document had recommendations from a minimum
of two base recommenders. Based on the number of times
an algorithm is listed within the top-performing set of algo-
rithms, the overall best algorithm is B-CCP (Co-Citation
Proximity) as it is ranked amongst the best algorithms across
five metrics (see Table 3). In what follows, we discuss the
performance of each algorithm in detail across each metric.

5.2.1 Accuracy

Accuracy is an important metric as it is an assessment of
the relevance and relatedness of the recommended docu-
ments to the selected document. As in Fig. 6, B-CCP, that
uses co-citations to recommend documents, achieves the best
accuracy scores indicating 62.85% very accurate results. In
addition,B-CCPoutperformsother algorithmswhen it comes
to accuracy as depicted in Fig. 7. In contrast, B-CA has
the weakest performance amongst the evaluated algorithms
with only 29.63% very accurate results. Moreover, B-CA is
the only algorithm that scores lower than two on average
which suggests that the rest of the algorithms all recommend
somewhat or very accurate documents. The notion behind
co-authorship-based recommendations does not necessarily
optimize for accuracy. Indeed, in the age of increasingly
multi-disciplinary studies andmulti-authored documents, we
find it reasonable that co-authorship-based recommendations
are not as accurate as other methods which directly optimize
for content or citation similarity.

The algorithms that stand in the secondplace areA-MS,A-
BL, A-BS, and B-AS; except for B-AS, the rest of algorithms
in the second rank are aggregation algorithms. Overall, the
aggregation algorithms (i.e., A-BS, A-BL, and A-MS) per-
form better than the base algorithms (with the exception of
B-CCP) as they are all in the top-performing group with a
mean score of 2.4, and they succeed in harnessing the better
recommendations from the base algorithms.

Figure 8 shows the correlation structure according to
Spearman rank correlation (ρ) [100] as well as the clustering
of six metrics we used for evaluation. Accuracy and nov-
elty are slightly negatively correlated (ρ = −0.06). Novel
recommendations are the ones that the researchers did not
know about before and so may be more likely to be rated as

not accurate. The negative correlation disappears between
accuracy and serendipity (ρ = 0.17), as by definition a
serendipitous recommendation needs to be surprising in a
good way which would be very unlikely if the recommenda-
tion is not accurate.

B-CCP (Co-Citation Proximity) outperforms all the
other algorithms with the highest average accuracy
(i.e., 2.48/3), whereas B-CA (Co-Authorship) performs
the worst with a mean accuracy of 1.9/3.

5.2.2 Coverage

The Scott–Knott test (Fig. 7) divides the algorithms into
two groups of ranks where one group outperforms the other
one in terms of coverage. B-AS, B-CCS, B-CCP, and B-
BC are the base algorithms that are ranked as the top ones.
The only aggregation algorithm that is amongst the top algo-
rithms is A-BS which aggregates the base algorithms using
beam search. As shown in Figs. 6 and 7, all algorithms per-
form poorly on the coverage; except for B-AS, that compares
the abstracts of documents, the rest of algorithms received a
mean evaluation score of less than two.

Recommendation algorithms score between 1.72/3
and 2.10/3 on coverage. B-AS (Abstract Similar-
ity) recommend documents with the best coverage
(i.e., 2.1/3) while B-IBCF (Item-Based Collaborative
Filtering) has theweakest performance in terms of cov-
erage (i.e., 1.72/3).

5.2.3 Diversity

For the diversity metric, which seems to be weakly inter-
acting with other metrics (see Fig. 8), all algorithms except
B-IBCF and B-CA do relatively well. In particular, all the
other base algorithms perform very close to each other (with
an average score of between 2.27 and 2.50). The aggrega-
tion algorithms, as shown in Fig. 7, are all placed in the
second rank on diversity while four base algorithms (B-AS,
B-CCS, B-BC, and B-CCP) hold the first place.Moreover, as
in Fig. 6, all the algorithms except B-IBCF andB-CAachieve
a proportion of less than 10% not at all diverse results. Inter-
estingly, the documents that were recommended by A-MS,
A-BL, and B-AS were almost all very or somewhat diverse
documents with only 2.29%, 2.30%, and 2.37% not at all
diverse recommendations.

In the analysis of novelty, diversity, and serendipity met-
rics, a different picture emerges. It is evident, and perhaps not
surprising, that usefulness, accuracy and coverage are highly
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Fig. 6 Normalized distribution of the evaluators’ ratings (i.e., scores)
across each metric. The top (green), middle (red), and bottom (gray)
colors indicate the percentages of scores that are marked as very, some-

what, and not at all, respectively. The algorithms are ordered by the
proportion of the responses that indicate very scores
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Table 3 Total number of times
when each algorithm is ranked
in the first place by the
Scott–Knott test [90] across
each metric

Algorithm Metric
Total Accuracy Coverage Diversity Novelty Serendipity Usefulness

B-CCP 5 � � � � �
B-AS 4 � � � �
A-BS 3 � � �
B-CCS 3 � � �
B-BC 3 � � �
A-BL 2 � �
A-MS 2 � �
B-STS 1 �
B-IBCF 0

B-CA 0

Novelty

Serendipity
Diversity

Usefulness

Accuracy

Coverage

Coverage

Accuracy

Usefulness

Diversity

Serendipity

Novelty

0.01 0.24 0.34 0.68 0.69 1

−0.06 0.17 0.28 0.59 1 0.69

0.2 0.47 0.38 1 0.59 0.68

0.28 0.26 1 0.38 0.28 0.34

0.57 1 0.26 0.47 0.17 0.24

1 0.57 0.28 0.2 −0.06 0.01

0 0.5 1
Value

Color Key

Fig. 8 Spearman rank correlation between evaluation metrics

correlated with each other (ρ > 0.69), while novelty and
serendipity are tightly correlated as well (ρ = 0.57). diver-
sity on the other hand shows moderate correlation (between
ρ = 0.27 and ρ = 0.34) with all the metrics, but strong
(anti)correlation with none.

Except for B-IBCF (Item-Based Collaborative Filter-
ing) and B-CA (Co-Authorship), all algorithms per-
form similarly well in recommending very or somewhat
diverse documents with an average score of between
2.27 and 2.50.

5.2.4 Novelty

Regarding the novelty metric, the recorded scores are
between 2.0 and 2.3 on average. As depicted in Fig. 7, the
Scott–Knott test divides the algorithms into two groups of
ranks. All algorithms perform relatively well and achieve an
average score ofmore than 2.01, yet the average scores for the
first group of ranks are more than 2.21. Four base algorithms,
i.e., B-CCS, B-AS, B-BC, and B-STS, are ranked in the first
place for recommending novel documents. However, none

of the aggregation algorithms are placed in the first group
of ranks (Fig. 7), and they are all placed in the second rank.
Given the interactions between metrics, an intuitive expla-
nation of this phenomenon might be that the aggregation
algorithms inherently try to increase consensus and hence
focus on the overlapping recommendations across the base
algorithms, which in turn reduces the novelty. This is because
themore a document appears in the recommended list of doc-
uments of diverse algorithms, the less it is likely to be a novel
one.

All the recommendation algorithms perform relatively
well and achieve an average novelty score of more than
2.01/3 on average. Four base algorithms, including
B-CCS (Co-Citation Similarity), B-AS (Abstract Sim-
ilarity), B-BC (Bibliographic Coupling), and B-STS
(Semantic Similarity), are placed in the first group of
ranks with an average score of more than 2.21/3.

5.2.5 Serendipity

Moving to the serendipity, strong performers are B-CCP,
A-MS, A-BL, and A-BS (Figs. 6, 7). Three aggregation algo-
rithms performwell in terms of recommending serendipitous
documents. Intuitively, in order to achieve high serendipity
scores, the recommendation has to be good in some sense
in addition to being novel. The aggregation algorithms strike
a balance between keeping some novelty and goodness of
recommendations. On the serendipity metric, we observe a
clear dominance of the aggregation algorithms over base rec-
ommenders, with the exception of B-CCP that also performs
well regardless of being a base algorithm. B-CCP is the only
base algorithm that is statistically significantly better than all
the other base algorithms. The top-ranked algorithms achieve
an average score of between 2.36 and 2.47. Theweakest three
algorithms with an average score of below 2 are B-STS, B-
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CA, and B-IBCF. This might be because the approaches that
are designed to increase serendipity rely on different heuris-
tics, such as returning uncertain results, to generate surprising
and unexpected recommendations [52]. However, the afore-
mentioned algorithms use citations, authors, and semantic
contents for recommendations that can reduce the “surprise”
factor of the returned documents. Comparing the evaluation
results of B-CCP and B-CCS, we observe that although B-
CCP is lower in novelty, i.e., users did not know about the
recommended documents before, B-CCP ranks higher for
serendipity, i.e., recommended documents are both novel and
surprising. In other words, B-CCP does not produce a lot of
novel documents in comparison to B-CCS but the ones that
are produced are surprising ones.

Aggregation algorithms, including A-MS (Merge Sort
Aggregation), A-BL (Borda Aggregation), and A-BS
(Beam Search Aggregation), plus B-CCP (Co-Citation
Proximity) outperform all the other base algorithms on
serendipity metric. On the other hand, B-STS (Seman-
tic Similarity), B-CA (Co-Authorship), and B-IBCF
(Item-Based Collaborative Filtering) are the weakest
algorithms with an average serendipity score of below
2/3.

5.2.6 Usefulness

Similar to serendipity, in addition toB-CCP andB-AS, all the
aggregation algorithms are amongst the top-performing algo-
rithms. Indeed, this pattern is very similar to the serendipity
metric and can easily be explained by the fact that useful-
ness and serendipity are correlated with ρ = 0.48. As such,
optimizing for usefulness seems to have also optimized and
achieved top results for serendipitymetric as well. B-CA and
B-IBCF have the weakest performance on usefulnesswith an
average score of 1.8/3. A reason for such a relatively weak
performance can be their recommendation strategy where
B-CA returns the documents that have similar or the same
authors and B-IBCF recommends documents with similar
citations.

Aggregation algorithms, including A-MS (Merge Sort
Aggregation), A-BL (Borda Aggregation), and A-BS
(Beam Search Aggregation), along with two base algo-
rithms, including B-CCP (Co-Citation Proximity) and
B-AS (Abstract Similarity), have the best performance
in recommending useful documents.

Table 3 summarizes the total number of times each algo-
rithmwas amongst the best performers. As shown in Table 3,
B-CCP hits the best performance for five evaluation metrics,

while novelty is the only area that B-CCP is not ranked in
the first place. However, despite being in the second place
on novelty, it achieves an average score of 2/3 which is an
acceptable score (having considered that the score of 2means
somewhat novel). The second best algorithm, in terms of
the number of times it appears in the first place, is B-AS
which is another base algorithm. B-AS uses abstract sim-
ilarity approach and performs relatively well in terms of
coverage, diversity, serendipity, and usefulness. The third
place belongs to an aggregation algorithm, i.e., A-BS, that
applies beam search in order to aggregate the recommenda-
tions from the base algorithms.

On the other hand, the worst overall performance belongs
to B-IBCF and B-CA. B-IBCF applies an item-based collab-
orative filtering approach and B-CA recommends according
to shared or similar co-authors. This observation suggests
that co-authorship and item-based collaborative filtering are
not well suited for biomedical research applications.

The best overall performance is achieved by B-CCP
(Co-Citation Proximity) being ranked in the first place
for five of the evaluation metrics. On the other hand,
the worst performance belongs to B-IBCF (Item-Based
Collaborative Filtering) and B-CA (Co-Authorship).
Depending on the metric(s) of interest, an appropriate
algorithm should be selected according to Table 3.

5.3 Limitations

We study seven base algorithms and three aggregations that
are commonly used [5,6,29,35,54,69,94] because the focus
of our study is evaluating well-studied recommendation
algorithms and analyzing their performance in large scale
production knowledge bases. However, future studies should
shedmore light on other recommendation algorithms such as
rank-based aggregation and LP approximation (A-LP). A-LP
solves the problem of finding the Kemeny optimal ranking
by posing it as an integer linear program (ILP) [3]. Unlike
other aggregation algorithms, the amount of overlap p has
a significant effect on the runtime complexity of A-LP as
the reduction in the number of variables and constraints is
quadratic and cubic in 1/p, respectively. Also, adding more
base algorithms will affect LP more than other aggregation
methods, unless p increases by the same rate. We omitted
using the LP-based algorithm as it was prohibitively slow for
the majority of papers. Therefore, even though the LP can be
solved using off-the-shelf LP solvers, in practice, we found
this to be prohibitively expensive due to a large number of
transitivity constraints. Furthermore, in our implementation
of algorithms, for example, we use the TF-IDF in order to
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measure similarities (see Sect. 4). Future research can expand
our findings using other solutions such as word embedding.

For the evaluations (see Sect. 5), our participants were
graduate researchers and postdoctoral fellows at a center
for cellular and biomedical research at a major research
university so they were all early career researchers. Future
experiments could include researchers at various career
stages. Each of the 14 participant selected 15 documents
with a total of 209 documents (see Sect. 5.1.2). We used
the 209 documents to evaluate the algorithms. Future studies
can expand this work by invitingmore participants withmore
documents. We asked participants to rate the recommended
papers based on their qualitative assessment of accuracy, cov-
erage, diversity, novelty, serendipity, and usefulness. There
are other measures that could be used and participants could
be asked to provide more general assessments (rather than
ratings). Future work could also consider quantitative assess-
ments [10,13,19,30,70].

6 Conclusion

In this paper, we discuss the implementation and evaluation
of seven base recommendation algorithms and three aggre-
gation algorithms, aimed at providing relevant document
recommendations for biomedical knowledge bases. The base
recommendation algorithms utilize diverse sets of features,
such as a citation network, text content, semantic tags, and
co-authorship information.

We conducted a qualitative experiment to identify the
quality of recommendation algorithms for biomedical researchers.
We compared the performance of the algorithms on six
metrics and identified the algorithms that perform better
according to each. For each metric, we rank the algorithms
using the Scott–Knott test. For example, B-CCP is ranked
first for accuracy and it outperforms all the other algorithms
with the highest average accuracy (i.e., 2.48/3). However,
we find that, on average, the majority of the algorithms (nine
out of ten) recommend documents that are somewhat or very
accurate. The best overall performance is achieved by B-
CCP (Co-Citation Proximity) being ranked in the first place
according to five of the evaluation metrics (i.e., accuracy,
coverage, diversity, serendipity, and usefulness).

Results of the experiments demonstrate the impact of
limitations in the upstream algorithms. For example, recom-
mendation algorithms that rely on semantic similarity require
semantic tags for most documents in the knowledge base and
author similarity requires author disambiguation within the
knowledge base. The results of the study have had a real-
world impact in helping to determine which algorithms to
deploy in the Meta production system.

In the future, wewill focus on personalizing the user expe-
rience, which is an active research area [11,60], by making

recommendations based on the user’s document library, past
reading lists, social interactions, and interests (e.g., identified
through subscriptions to researchers and topics) automati-
cally without any input from the user. The findings of this
study can also be used to develop similar recommenda-
tion systems for other entity types (i.e., authors, journals,
institutions, and concepts) that constitute Meta’s semantic
knowledge network.
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6. Ali, A., Meilă, M.: Experiments with Kemeny ranking: what
works when? Math. Soc. Sci. 64, 28–40 (2012)

7. Apache: Introduction to item-based recommendations with
hadoop (2019). http://mahout.apache.org/users/recommender/
intro-itembased-hadoop.html/. Last accessed 21 Feb 2019

8. Bartholdi, J., III., Tovey, C., Trick, M.: Voting schemes for which
it is can be difficult to tell whowon the election. Soc. ChoiceWelf.
6, 157–165 (1989)

9. Beel, J., Gipp, B., Langer, S., Breitinger, C.: paper recommender
systems: a literature survey. Int. J. Digit. Libr. 17(4), 305–338
(2016)

10. Beel, J., Langer, S.: A comparison of offline evaluations, online
evaluations, and user studies in the context of research-paper rec-
ommender systems. In: International Conference on Theory and
Practice of Digital Libraries, pp. 153–168. Springer (2015)

11. Beel, J., Langer, S., Genzmehr,M., Gipp, B., Breitinger, C., Nürn-
berger, A.: Research paper recommender system evaluation: a
quantitative literature survey. In: Proceedings of the International
Workshop on Reproducibility and Replication in Recommender
Systems Evaluation, Ser. RepSys ’13. New York, NY, USA, pp.
15–22. ACM (2013)

12. Beel, J., Langer, S., Gipp, B., Nürnberger,A.: The architecture and
datasets of Docear’s research paper recommender system. D-Lib
Mag. 20(11), 1 (2014)

13. Bergstrom, C.T., West, J.D., Wiseman, M.A.: The eigenfactor
metrics. Int. J. Neurosci. 28(45), 11 33-11 434 (2008)

14. Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.: Recom-
mender systems survey. Knowl.-Based Syst. 46, 109–132 (2013)

15. Bodenreider, O., Nelson, S.J., Hole, W.T., Chang, H.F.: Beyond
synonymy: exploiting the UMLS semantics in mapping vocab-
ularies. In: Proceedings of the AMIA Symposium, p. 815.
American Medical Informatics Association (1998)

16. Bollacker, K.D., Lawrence, S., Giles, C.L.: CiteSeer: an
autonomous web agent for automatic retrieval and identification

123

https://scholar.googleblog.com/2017/10/follow-related-research-for-key-authors.html
https://scholar.googleblog.com/2017/10/follow-related-research-for-key-authors.html
http://allenai.org/semantic-scholar/
http://allenai.org/semantic-scholar/
http://mahout.apache.org/users/recommender/intro-itembased-hadoop.html/
http://mahout.apache.org/users/recommender/intro-itembased-hadoop.html/


214 E. Noei et al.

of interesting publications. In: Proceedings of the 2nd Interna-
tional Conference on Autonomous Agents, pp. 116–123. ACM
(1998)

17. Box, G., Hunter, W., Hunter, J.: Statistics for Experimenters.
Wiley (1978)

18. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau,
F.: Extensible markup language (xml) 1.0 (2000)

19. Breese, J.S., Heckerman, D., Kadie, C.M.: Empirical analysis of
predictive algorithms for collaborative filtering. In: Proceedings
of the Fourteenth Conference on Uncertainty in Artificial Intelli-
gence, pp. 43–52 (1998)

20. Campos, D., Matos, S., Oliveira, J.L.: A modular framework
for biomedical concept recognition. BMC Bioinform. 14(1), 281
(2013)

21. Cañamares, R., Castells, P., Moffat, A.: Offline evaluation options
for recommender systems. Inf. Retr. J. 23, 1–24 (2020)

22. Canese, K., Weis, S.: PubMed: the bibliographic database. The
NCBI Handbook (2013). http://www.ncbi.nlm.nih.gov/books/
NBK153385/. Last accessed 15 Dec 2017

23. Cision: Acquisition of the Thomson Reuters intellectual property
and science business by Onex and Baring Asia completed (2016).
http://www.prnewswire.com/. Last accessed 15 Dec 2017

24. Clarivate, Web of Science: Core collection help (2017). https://
images.webofknowledge.com/images/help/WOS/hp_full_
record.html. Last accessed 15 Jan 2019

25. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduc-
tion to Algorithms. MIT Press (2009)

26. Crossref: Crossref (2019). http://www.crossref.org/
27. de Borda, J.-C.: Mémoire sur les élections au scrutin, Histoire de

l’Académie Royale des Sciences, Paris, pp. 657–664 (1781)
28. Ding, Y., Zhang, G., Chambers, T., Song, M., Wang, X., Zhai, C.:

Content-based citation analysis: the next generation of citation
analysis. J. Assoc. Inf. Sci. Technol. 65(9), 1820–1833 (2014)

29. Dwork,C.,Kumar,R.,Naor,M., Sivakumar,D.: Rank aggregation
methods for the web. In: Proceedings of the 10th International
Conference on World Wide Web, pp. 613–622. ACM (2001)

30. Ekstrand, M.D., Kannan, P., Stemper, J.A., Butler, J.T., Konstan,
J.A., Riedl, J.T.: Automatically building research reading lists. In:
Proceedings of the Fourth ACM Conference on Recommender
Systems, pp. 159–166. ACM (2010)

31. Elsevier: The largest up-to-date collection of global, unbiased
and expertly sourced research (2017). https://www.elsevier.com/
solutions/scopus/content. Last accessed 2018 Dec 15

32. Fafalios, P., Tzitzikas, Y.: Stochastic reranking of biomedical
search results based on extracted entities. J. Assoc. Inf. Sci. Tech-
nol. 68(11), 2572–2586 (2017)

33. Falagas, M.E., Pitsouni, E.I., Malietzis, G.A., Pappas, G.: Com-
parison of PubMed, Scopus,Web of Science, andGoogle Scholar:
strengths andweaknesses. J. Fed. Am. Soc. Exp. Biol. 22(2), 338–
342 (2008)

34. Ge, M., Delgado-Battenfeld, C., Jannach, D.: Beyond accuracy:
evaluating recommender systems by coverage and serendipity. In:
Proceedings of the Fourth ACM Conference on Recommender
Systems, pp. 257–260 (2010)

35. Gipp, B., Beel, J.: Citation proximity analysis (CPA): a new
approach for identifying related work based on co-citation analy-
sis. In: ISSI’09: 12th International Conference on Scientometrics
and Informetrics, pp. 571–575 (2009)

36. Gomaa, W.H., Fahmy, A.A.: A survey of text similarity
approaches. Int. J. Comput. Appl. 68(13), 13–18 (2013)

37. Google: Google scholar: about (2020). https://scholar.google.ca/
intl/en/scholar/about.html

38. Greenhalgh, T.: How to read a paper: the medline database. BMJ
315(7101), 180–183 (1997)

39. Gruson, A., Chandar, P., Charbuillet, C., McInerney, J., Hansen,
S., Tardieu,D.,Carterette,B.:Offline evaluation tomakedecisions

about playlistrecommendation algorithms. In: Proceedings of the
Twelfth ACM International Conference on Web Search and Data
Mining, pp. 420–428 (2019)

40. Hakenberg, J., Plake, C., Leaman, R., Schroeder, M., Gonzalez,
G.: Inter-species normalization of gene mentions with GNAT.
Bioinformatics 24(16), i126–i132 (2008)

41. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evalu-
ating collaborative filtering recommender systems. ACM Trans.
Inf. Syst. 22(1), 5–53 (2004)

42. Ho, T. K.: Random decision forests. In: Proceedings of 3rd Inter-
national Conference on Document Analysis and Recognition,
vol. 1, pp. 278–282. IEEE (1995)

43. Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Informa-
tion retrieval in folksonomies: search and ranking. In: European
Semantic Web Conference, pp. 411–426. Springer (2006)

44. Huang, Y., Contractor, N., Yao, Y.: CI-KNOW: recommendation
based on social networks. In: Proceedings of the International
Conference on Digital Government Research, pp. 27–33. Digital
Government Society of North America (2008)

45. Ishida, Y., Shimizu, T., Yoshikawa, M.: An analysis and compar-
ison of keyword recommendation methods for scientific data. Int.
J. Digit. Libr. 21, 1–21 (2020)

46. Jack, K.: Mendeley: crowdsourcing and recommending research
on a large scale (2011). http://www.slideshare.net/KrisJack/
mendeley-crowdsourcing-and-recommending-research-on-a-
large-scale. Accessed 2015-02-25

47. Jack, K.: Mahout becomes a researcher: large scale recommen-
dations at Mendeley (2012). http://www.slideshare.net/KrisJack/
mahout-becomes-a-researcher-large-scale-recommendations-
at-mendeley. Last accessed 15 Dec2017

48. Jack, K.: Mendeley: recommendation systems for academic
literature (2012). http://www.slideshare.net/KrisJack/mendeley-
recommendation-systems-for-academic-literature. Last accessed
15 Dec 2017

49. Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: An Intro-
duction to Recommender Systems. Cambridge, New York (2011)

50. Jolliffe, I.: Principal Component Analysis. Springer (2011)
51. Jones, N.: AI science search engines expand their reach, Novem-

ber 11, 2016. http://www.nature.com/news/ai-science-search-
engines-expand-their-reach-1.20964. Last accessed 15 Dec 2017

52. Kaminskas, M., Bridge, D.: Diversity, serendipity, novelty, and
coverage: a survey and empirical analysis of beyond-accuracy
objectives in recommender systems. ACM Trans. Interact. Intell.
Syst. 7(1), 2 (2017)

53. Kemeny, J., Snell, J.: Mathematical Models in Social Sciences.
Blaisdell, New York (1962)

54. Kessler, M.M.: Bibliographic coupling between scientific papers.
Am. Doc. 14(1), 10–25 (1963)

55. Klavans, R., Boyack, K.W.: Which type of citation analysis gen-
erates the most accurate taxonomy of scientific and technical
knowledge? J. Assoc. Inf. Sci. Technol. 68(4), 984–998 (2017)

56. Konstan, J.A., McNee, S.M., Ziegler, C.-N., Torres, R., Kapoor,
N., Riedl, J.: Lessons on applying automated recommender sys-
tems to information-seeking tasks. AAAI 6, 1630–1633 (2006)

57. Kotkov, D., Wang, S., Veijalainen, J.: A survey of serendipity in
recommender systems. Knowl.-Based Syst. 111, 180–192 (2016)

58. Kreisman, R.: Thomson Reuters-Google Scholar linkage offers
big win for STM users and publishers (2013)

59. Krishnan, V., Narayanashetty, P.K., Nathan, M., Davies, R.T.,
Konstan, J.A.: Who predicts better? results from an online study
comparing humans and an online recommender system. In:
Proceedings of the 2008ACMConference on Recommender Sys-
tems, pp. 211–218 (2008)

60. Küçüktunç, O., Saule, E., Kaya, K., Çatalyürek, Ü.V.: Towards
a personalized, scalable, and exploratory academic recommenda-
tion service. In: Proceedings of the 2013 IEEE/ACM International

123

http://www.ncbi.nlm.nih.gov/books/NBK153385/
http://www.ncbi.nlm.nih.gov/books/NBK153385/
http://www.prnewswire.com/
https://images.webofknowledge.com/images/help/WOS/hp_full_record.html
https://images.webofknowledge.com/images/help/WOS/hp_full_record.html
https://images.webofknowledge.com/images/help/WOS/hp_full_record.html
http://www.crossref.org/
https://www.elsevier.com/solutions/scopus/content
https://www.elsevier.com/solutions/scopus/content
https://scholar.google.ca/intl/en/scholar/about.html
https://scholar.google.ca/intl/en/scholar/about.html
http://www.slideshare.net/KrisJack/mendeley-crowdsourcing-and-recommending-research-on-a-large-scale
http://www.slideshare.net/KrisJack/mendeley-crowdsourcing-and-recommending-research-on-a-large-scale
http://www.slideshare.net/KrisJack/mendeley-crowdsourcing-and-recommending-research-on-a-large-scale
http://www.slideshare.net/KrisJack/mahout-becomes-a-researcher-large-scale-recommendations-at-mendeley
http://www.slideshare.net/KrisJack/mahout-becomes-a-researcher-large-scale-recommendations-at-mendeley
http://www.slideshare.net/KrisJack/mahout-becomes-a-researcher-large-scale-recommendations-at-mendeley
http://www.slideshare.net/KrisJack/mendeley-recommendation-systems-for-academic-literature
http://www.slideshare.net/KrisJack/mendeley-recommendation-systems-for-academic-literature
http://www.nature.com/news/ai-science-search-engines-expand-their-reach-1.20964
http://www.nature.com/news/ai-science-search-engines-expand-their-reach-1.20964


A qualitative study of large-scale recommendation algorithms for biomedical knowledge bases 215

Conference on Advances in Social Networks Analysis and Min-
ing, pp. 636–641. ACM (2013)

61. Kunaver, M., Požrl, T.: Diversity in recommender systems—a
survey. Knowl.-Based Syst. 123, 154–162 (2017)

62. Lawrence, S., Giles, C.L., Bollacker, K.: Digital libraries and
autonomous citation indexing. IEEE Comput. 32(6), 67–71
(1999)
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